Multiple Pentafluorophenylation of 2,2,3,3,5,6,6-Heptafluoro-3,6-dihydro-2*H*-1,4-oxazine with an Organosilicon Reagent: NMR and DFT Structural Analysis of Oligo(perfluoroaryl) Compounds

by Masakazu Nishida^{*a}), Haruhiko Fukaya^a), Yoshio Hayakawa^a), Taizo Ono^a), Kotaro Fujii^b), and Hidehiro Uekusa^b)

^a) National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Shimoshidami, Moriyama-ku, Nagoya, 463-8560 Japan

(phone: +81-52-736-7329; fax: +81-52-736-7304; e-mail: m-nishida@aist.go.jp)

^b) Department of Chemistry and Material Science, Tokyo Institute of Technology, Ookayama 2, Meguroku, Tokyo, 152-8551 Japan

The reagent Me₃Si(C₆F₅) was used for the preparation of a series of perfluorinated, pentafluorophenyl-substituted 3,6-dihydro-2*H*-1,4-oxazines (**2**–**8**), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound **1** (*Scheme*), but also in *para* position of the introduced C₆F₅ substituent(s) leading to compounds with one to three nonafluorobiphenyl (C₁₂F₉) substituents. While the tris(pentafluorophenyl)-substituted compound **3** could be isolated as the sole product by stoichiometric control of the reagent, the higher-substituted compounds **5**–**8** could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by ¹⁹F- and ¹³C-NMR, MS, and/or X-ray crystallography. DFT simulations of the ¹⁹F- and ¹³C-NMR chemical shifts were performed at the B3LYP-GIAO/6-31++G(d,p) level for geometries optimized by the B3LYP/6-31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.

Introduction. – Perfluorinated compounds are being used as a wide variety of engineering polymers and surfactants on an industrial scale because of their unique thermal and chemical properties. Especially, perfluoroaryl compounds show several unique properties such as high electron affinity or a rather sterically demanding and π -electron-accepting nature compared with the corresponding non-fluorinated aryl systems. Several reports showed that strong Lewis acidity of a perfluoroaryl ring is efficient for catalytic reactions: perfluoroarylboranes as co-catalyst for the olefin polymerization with group-4 metallocene alkyls [1], bifunctional perfluoroarylboranes for the activation of basic substrates, and the selective binding of anions [2]. For the purpose of application of asymmetric catalysis, chiral bidentate (perfluoroaryl)phosphane ligands were synthesized [3]. Polymers containing perfluorophenylene moieties at the main chain are expected to be used in high-performance thermoplastics [4-6] and opticalwaveguide devices [7][8]. Recently, tetrakis(pentafluorophenyl)porphyrin was reported to be applicable in various fields: imine aziridination [9], hydrogen peroxide induced oxidation [10], phenylethyne-linked porphyrin dyads [11], and as matrices for matrix-assisted laser-desorption-ionization (MALDI) mass spectrometry [12].

Fluorinated organosilicon compounds have been used as transfer reagents of fluorinated substituents for preparing synthetic intermediates in the areas of agrochemicals,

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

pharmaceuticals, *etc.* [13]. Trimethyl(trifluoromethyl)silane, Me₃SiCF₃, is the most effective transfer reagent of a CF₃ moiety for various organic molecules, especially aldehydes and ketones [14]. A recent report has described the trifluoromethylation of less-reactive carboxylates, thiocyanates, and selenocyanates [15]. An aromatic analogue, Me₃Si(C₆F₅), was also prepared by reaction of C₆F₅Br, Me₃SiCl, and (Me₂N)₃P [16], and several reports were published on the pentafluorophenylation of organic molecules by Me₃Si(C₆F₅), *e.g.*, perfluoro-olefins [17], perfluoro-aza-alkenes [18][19], or perfluorinated carbonyl compounds [20].

In a preliminary note [21], we described the reactions of $Me_3Si(C_6F_5)$ with highly electronegative and bulky substrates, focusing on a different reactivity between perfluorinated 3,4-dihydro-2*H*-pyrrole and perfluorinated 3,6-dihydro-2*H*-1,4-oxazine (**1**; see the *Scheme* below). This former study indicated that in the reaction of $Me_3Si(C_6F_5)$ the pyrrole predominantly provides dimerized products, while the reaction of the oxazine **1** affords C_6F_5 -substituted derivatives without dimerization [21]. In the substitution reaction of perfluorinated *aliphatic* imines, such as perfluoro-aza-alkenes, oligomerization competes and a complex mixture is obtained. Differing from such perfluorinated imine systems, the suppression of the competing dimerization or oligomerization reaction found in the six-membered compound **1** prompted us to investigate in detail multiple pentafluorophenylations with $Me_3Si(C_6F_5)$, which led to a series of interesting perfluorinated products (*Scheme*) characterized spectroscopically and, in part, also by density-functional-theory (DFT) calculations.

Results and Discussion. – 1. *Synthesis.* Our approach towards the synthesis of new oligo- and poly(perfluoroaryl) materials was based on the reactions of compounds 1-3 with Me₃Si(C₆F₅) under various conditions (*Scheme*). Because spray-dried KF, used as catalyst, is sensitive to moisture, all reactions with Me₃Si(C₆F₅) were performed under anhydrous conditions in an inert atmosphere. Although the reactions proceeded well in MeCN, tetraglyme, and other aprotic polar solvents, MeCN was the solvent of choice since it allowed convenient product separation. The reactions were typically started at 0° for 1 h, and then run at ambient temperature for 20 h. The results are summarized in *Table 1*.

When equimolar amounts of Me₃Si(C₆F₅) and **1** were used (*Table 1, Entry 1*), the mono-substituted compound **2** was obtained as the main product, accompanied by small amounts of the bis-adduct **4** and the tris-adduct **3**. When an excess of Me₃Si(C₆F₅) was used, compound **3** was obtained in moderate-to-good yield, while **4** was still isolated in low yield (*Entries 2* and *3*). To attempt selective preparations of compounds **3** and **4**, reaction of the isolated mono-adduct **2** with Me₃Si(C₆F₅) was next examined. When used in equimolar amounts (*Entry 4*), compound **4** was obtained in somewhat higher yield (16%; 28% based on consumed **2**). However, adduct **3** was present in the mixture in almost the same proportion (24%; 42% based on consumed **2**). Fortunately, the tris-adduct **3** was obtained as the sole product in 78% yield when using an excess of the reagent (*Entry 5*).

The pentafluorophenylation by $Me_3Si(C_6F_5)$ is considered to proceed *via* an addition–elimination mechanism (Ad_N-E) : attack of $(C_6F_5)^-$ at the C=N bond and successive elimination of F⁻. This mechanism works only when the C-atoms are directly bonded to the N-atoms so that the nucleophiles are only introduced into the neighbor-

i) Me₃Si(C₆F₅), KF (cat.), MeCN, 1 h at 0° , then 20 h at r.t. *ii*) Me₃Si(C₆F₅), KF (cat.), MeCN, 1 h at 0° , then 48 h at 50°.

Table 1. Reactions of $1-3$ with $Me_3Si(C_6F_5)$.	Conditions: at 0°	for 1 h, the	en at r.t. for	20 h, unless	s noted
	otherwise.				

Entry	Compound ([mmol])	Me ₃ Si(C ₆ F ₅) [mmol]	KF [mmol]	Products ^a)
1	1 (3.3)	3.3	0.75	2 (41), 3 (7.0), 4 (6.4)
2	1 (1.1)	2.3	0.21	2 (29), 3 (52), 4 (3.3)
3	1 (3.2)	9.7	0.64	2 (7.5), 3 (64)
4	2 (0.44)	0.44	0.085	2 (43), 3 (24), 4 (16)
5	2 (0.41)	0.82	0.085	2 (4.0), 3 (78)
6	3 (0.30)	0.30	0.11	3 (72), 5 (4.5), 6 (3.3)
7 ^b)	3 (0.30)	0.97	0.11	3 (5.6), 5 (8.3), 6 (3.5), 7a (7.8), 7b (3.0), 8 (0.6) ^c)

^a) Yields are given in % (in parentheses) and were determined by ¹⁹F-NMR integration. ^b) At 50° for 48 h. ^c) Together with a series of dimerization products (see *Fig. 2* and text).

ing C-atoms which is in contrast with the Ad_N -E reaction of perfluoro-olefin C=C systems, where multiple substitutions by nucleophiles around the perfluorocarbon skeletons are observed due to the migration of the C=C bonds, which leads to complex product mixtures [22][23].

Because two electron-withdrawing C_6F_5 groups of the bis-adduct **4** enhance the reactivity of the N=C-F unit, this compound easily decomposes upon column chromatography on silica gel (SiO₂) or by *Kugelrohr* distillation, which explains the low yields of **4** (*Table 1*). However, the tris-adduct **3** was found to be less reactive compared to **1**, **2**, and **4**, providing no tetrasubstituted anion (*Scheme, Route A*). This result is in strong contrast with the *Ruppert–Prakash* reagent, Me₃Si(CF₃), which was previously reported to give perfluorinated 2,2,6,6-tetramethylpiperidine in a similar fluorinated 1-azacyclohexene system [24]. One more contrasting difference is expected for the reagent Me₃Si(C₆F₅) because of the possibility to further react at the *para* position of the introduced pentafluorophenyl aromatics (*Routes B* and *C*). Thus, the reactivity of isolated **3** was further examined.

When compound **3** was reacted with 1 equiv. of $Me_3Si(C_6F_5)$, small amounts of the expected perfluorinated biphenyl compounds **5** and **6** were obtained (*Table 1*, *Entry 6*). When the reaction was conducted under more-severe conditions (50°, 48 h) with *ca*. 3 equiv. of the reagent, we were even able to isolate, apart from **5** and **6**, the perfluorinated bis-biphenyl and tris-biphenyl analogues **7a**,**b** and **8**, respectively (*Table 1*, *Entry 7*).

From a mechanistic point of view, it is noteworthy to point out two interesting features of the nucleophilic attack of a $(C_6F_5)^-$ anion on the already introduced C_6F_5 ring(s): 1) the nucleophilic attack hardly occurred in the reactions with 2 and 4, but in the reactions with the more-bulky compounds having at least three C_6F_5 groups, *i.e.*, compounds 3 and 5–7. This means that the N=C-F unit is more reactive than the *para* position of the C_6F_5 group. 2) The nucleophilic attack occurred only in *para* position of the C_6F_5 ring directly bonded to the heterocycles, but not on the C_6F_5 ring of the perfluorinated biphenyl group. Hence, *para* substitution stopped at the biphenyl stage, and any further extension of phenylene rings of the type $C_6F_5(C_6F_4)_n$, with n > 1, did not occur. It is very surprising that such a subtle structural change on the C_6F_5 -ring environment leads to such a profound change in the reactivity of the *para* position of the C_6F_5 ring in the Ad_N -E mechanism. Recently, the formation of 1-H-perfluoro-4,4'-polyphenyls (1-H(C_6F_4)_nF) was reported by nucleophilic attack at the *para* position of a C_6F_5 ring in the reaction of Me₃Si(C_6F_5) with CsF or Me₄NF [25], but no details were reported regarding compound characterization.

2. Compound Characterization. Compounds 2-8 were identified by ¹⁹F- and ¹³C-NMR, DI-MS, and MALDI-TOF-MS. Adjacent F-atom peaks were confirmed by the ¹⁹F{¹⁹F} homo-decoupling method. The correlations between ¹⁹F and ¹³C peaks were determined by either ¹⁹F-detected ¹⁹F,¹³C-HMQC spectroscopy or partially ¹³C{¹⁹F} hetero-decoupling techniques with selective ¹⁹F decoupling. As an example, the ¹⁹F,¹³C-HMQC spectrum of **3** is displayed in *Fig. 1*.

The material balance was very low in the reaction leading to the higher-substitution products (*Table 1, Entry 7*) due to a considerable amount of residual materials formed. Therefore, the residue was further analyzed by ¹⁹F-NMR and MALDI-TOF-MS. No 3,3,5,5-tetrasubstituted pentafluorophenyl derivative **9** was detected, though. However, the MALDI-TOF experiments indicated the formation of some intriguing dimeric products, consistent with a series of signals at m/z 422+148n (n=6-11), as shown in *Fig. 2.* Since the separation of these dimers was very difficult, the underlying mechanism is not clear yet. This dimerization reaction of the six-membered ring, however, is a competitive reaction for the multiple pentafluorophenylation, and it could be

Fig. 1. ¹⁹*F*-Detected ¹⁹*F*,¹³*C*-HMQC Spectrum of Compound 3. The F2 and F1 axes refer to $\delta_{\rm F}$ and $\delta_{\rm C}$, resp.

Fig. 2. MALDI-TOF Mass spectrum of inseparable dimeric side products

one of the reasons why no perfluorinated terphenyl derivatives were obtained under the more-severe reaction conditions.

The molecular structure of the tris-adduct **3** was unequivocally determined by X-ray crystallography (*Fig. 3*). Selected bond lengths, bond angles, and dihedral angles are listed in *Table 2*. For crystal data and structure-refinement details, see *Table 4* in the *Exper. Part.* In the asymmetric unit of the crystal, two molecules are independent. However, they can be fitted almost completely (RMS fit of 0.222 Å) by noncrystallographic rotation–inversion of 166.38°. Regarding the two geminal C₆F₅ substituents at C(12)¹), the distances C(1)–C(12) (1.533(2) Å) and C(12)–C(22) (1.543(2) Å), each between an sp² and an sp³ atom, are prolonged to an equivalent length of the C(sp³)–C(sp³) bond C(12)–C(17) (1.542(2) Å), comparable to the molecular structure of (C₆F₅)CH₂OC(CF₃)(C₆F₅)₂ (C–C 1.538(8) Å) [20]. Bond-angle distortions were also observed around the hetero-atoms: C(15)–O(16)–C(17) 114.79(12)°, N(13)–C(14)–C(15) 125.35(13)°, C(12)–N(13)–C(14) 118.60(12)°.

From a supramolecular point of view, compound **3** has a very interesting cap-like structure. The selection of the C₆F₅ group for a supramolecular-recognition site is based on the recent surge of reports on π - π stacking [26–28]. Further, we also expect interesting C-F···H-C interactions when using molecular systems based on several C₆F₅ groups in the vicinity of a nitrogen center, rather than in a scattered manner on the periphery of a carbon skeleton.

¹) Arbitrary atom numbering according to *Fig. 3*.

Fig. 3. X-Ray crystal structure of 3. Thermal ellipsoids are shown at the 50%-probability level.

Table 2. Selected Bond Lengths (Å), Bond Angles (°), and Torsion Angles (°) in the X-Ray Crystal Structure of $\mathbf{3}^1$

O(16)-C(15)	1.3753(18)	O(16)–C(17)	1.3762(19)
N(13)–C(14)	1.2616(19)	N(13)-C(12)	1.4867(18)
C(14)–C(15)	1.520(2)	C(14)–C(33)	1.496(2)
C(17)–C(12)	1.542(2)	C(12)–C(22)	1.543(2)
C(1)–C(12)	1.533(2)		
C(15)-O(16)-C(17)	114.79(12)	C(14)–N(13)–C(12)	118.60(12)
N(13)-C(14)-C(15)	125.35(13)	N(13)-C(14)-C(33)	119.67(13)
N(13)-C(12)-C(22)	102.68(11)	N(13)-C(12)-C(1)	109.93(12)
O(16)-C(15)-C(14)	114.78(12)	O(16)-C(17)-C(12)	113.60(12)
N(13)-C(12)-C(17)	109.19(12)	C(17) - C(12) - C(22)	117.01(12)
C(17)–C(12)–C(1)	106.34(12)	C(22)-C(12)-C(1)	111.59(12)
N(13)-C(14)-C(15)-O(16)	-0.4(2)	N(13)-C(14)-C(33)-C(38)	-88.51(19)
N(13)-C(14)-C(33)-C(34)	92.80(18)	N(13)-C(12)-C(22)-C(23)	62.02(16)
N(13)-C(12)-C(1)-C(6)	158.18(14)		

The end-cap structure of **3** most-likely also prevented further nucleophilic attack on the C=N bond, which rationalizes why no tetra-adduct **9** was formed. This is also the reason why additional pentafluorophenylation takes place at the *para* position of existing C_6F_5 substituent(s), which, in turn, gave rise to even deeper cap structures for **5**–**8**.

3. DFT Calculations. Although NMR analysis is the most powerful tool for the identification of perfluorinated compounds, an assignment of each peak was difficult with our compounds, not only in ¹⁹F-NMR, but also in ¹³C-NMR, especially in the case of adducts with several C_6F_5 rings. We reported earlier that DFT calculations of various fluoro compounds, when performed at the B3LYP level using the gauge-independent atomic orbital (GIAO) level with the 6-31++G(d,q) basis set, is quite useful for the estimation of chemical shifts [29] and also for conformational analysis of highly sterically hindered polyfluoro-olefins [22]. With these powerful theoretical arsenals in our hands, we, thus, confirmed the structures of compounds **2–8**.

Optimized geometries of 2–4 were obtained by starting from modified structures based on the X-ray crystal structure of 3 by removing or adding C_6F_5 rings at the B3LYP/6-31G(d) level. On the basis of the geometries so determined, ¹⁹F- and ¹³C-NMR shieldings were calculated at the B3LYP-GIAO/6-31++G(d,p) level (*Table 3*). Note that, in the following, the atomic numbers are defined according to the *IUPAC* priority rules. For compounds 2–4, the calculated (calc.) ¹⁹F-NMR shieldings showed a very good relationship with experimental (exper.) values, r^2 being 0.998 (2), 0.997 (3), and 0.994 (4) (*Fig. 4*). The differences between the experimentally determined and the calculated values were larger for the C₄F₄NO ring ($\Delta\delta$ (F) – 7.58 to – 11.43) than for the C₆F₅ rings ($\Delta\delta$ (F) – 2.95 to – 5.98), except for the 3-F-atom ($\Delta\delta$ (F) – 1.36) of the C₄F₄NO rings (F–C=N)²).

The calculated and experimental ¹³C-NMR shifts of **2**–**4** also showed a very good correlation, with r^2 values of 0.991 (**2**), 0.995 (**3**), and 0.995 (**4**) (data not shown graphically). In contrast with the above ¹⁹F-NMR data, the $\Delta\delta(C)$ values were smaller for the C₄F₄NO ring ($\Delta\delta(C) - 2.99$ to -4.44) than for the C₆F₅ rings ($\Delta\delta(C) - 7.14$ to -10.15) and for the C=N group of the C₄F₄NO ring ($\Delta\delta(C) - 9.70$ to -11.37). In cases of close-lying peaks, especially in the ¹³C-NMR experiments, reversals of signal orders between calculated and experimental values were observed. Accordingly, for the compounds having close-lying peaks, NMR prediction was not perfect, and, thus, the data had to be carefully examined. In general, the calculated values were positively shifted for ¹⁹F-NMR shifts, while they were negatively shifted for ¹³C-NMR shifts due to the π -electron effect, as observed before for highly branched fluoro-olefins [22].

The more-complicated structures **5–8** were also successfully corroborated by means of ¹⁹F- and ¹³C-NMR analyses of experimental and DFT-calculated shielding data. The geometries of these compounds were determined at the B3LYP/6-31G(d) level, and the ¹⁹F- and ¹³C-NMR shifts were calculated from these geometries at the B3LYP-GIAO/6-31++G(d,p) level. The experimentally determined ¹⁹F- and ¹³C-NMR chemical shifts of **5–8** are given in the *Exper. Part*³). It should be useful to pointed out some trends: *1*) the absorption signals by *o*-F-atoms (2,6-F) of the 3-C₆F₅ moiety, *i.e.*, the C₆F₅ group at the 3-position of the 1,4-oxazine ring²) appeared at *ca*. $\delta(F) - 140$, while those of the 5-C₆F₅ group appeared at *ca*. $\delta(F) - 148$, while that of the 5-C₆F₅ group resonated at *ca*. $\delta(F) - 149$ ppm. *3*) the *m*-F-atoms (3,5-F) of the 3- and 5-C₆F₅

²) Non-systematic C-atom numbering as indicated in formula 3 (Scheme).

³) Supplementary data regarding the *calculated* NMR chemical shifts of 5-8 can be obtained from the corresponding author (*M*. *N*).

Group/Atom ²)	2		3		4	
	obs.	calc.	obs.	calc.	obs.	calc.
C ₄ F ₂ NO ^a)						
2-F	-72.31	-83.12	-71.78	-82.07	-75.80	-84.43
3-F					-62.81	-64.20
5-F	- 99.76	-107.34				
6-F	- 89.68	- 99.11	-76.32	-87.75	-78.45	- 88.94
$3 - C_6 F_5$						
2,6-F	-138.65	-142.11	-140.01	-142.69		
3,5-F	-158.68	-164.53	-159.42	-165.17		
4-F	-145.94	-151.85	-147.92	-153.26		
$5,5-(C_6F_5)_2$						
2,6-F			-135.55	-139.01	-135.83	- 139.18
3,5-F			-159.49	-165.45	-159.46	- 165.39
4-F			-149.27	-154.81	-149.26	- 154.59
$C_4F_nNO^a$)						
2-C	112.20	108.57	113.25	109.54	109.72	106.63
3-C	158.23	148.33	149.78	140.08	149.33	137.96
5-C	107.27	102.85	66.36	63.38	66.34	63.31
6-C	113.57	109.45	119.03	115.02	119.03	115.02
$3-C_6F_5$						
1-C	105.16	97.14	106.20	97.53		
2,6-C	144.72	134.59	145.03	135.16		
3,5-С	137.96	128.20	137.86	127.94		
4-C	144.04	134.32	143.52	134.04		
$5,5-(C_6F_5)_2$						
1-C			110.18	102.72	110.17	103.03
2,6-C			144.93	135.41	144.96	134.81
3,5-C			138.30	128.80	138.33	128.74
4-C			142.38	132.82	142.68	132.78

Table 3. *Experimentally Observed vs. Calculated* ¹⁹*F- and* ¹³*C-NMR Chemical Shifts* (in ppm) of **2–4**. For details, see text and *Exper. Part.*

^a) For **2**, **3**, and **4**, *n*=6, 4, and 5, resp. (see *Scheme*).

groups appeared at *ca*. $\delta(F) - 159$. 4) The signals of the C₁₂F₉ group resonated at *ca*. $\delta(F) - 135$ (2,6-F); -137 (2',6'-F); -160 (3',5'-F), and at -149 (4'-F), while the 3,5-F signals appeared at *ca*. $\delta(F) - 139$ and -135 in the 3- and 5-C₁₂F₉ moieties, respectively. The calculated ¹⁹F-NMR shifts nicely correlated with the experimental values, the correlation coefficient being very high (0.995 < r^2 < 0.998). When looking at the overall correlation for the optimized geometries of **2**–**8**, an overall correlation coefficient r^2 of 0.995 was obtained (*Fig. 4*). Thus, the combined use of DFT-based and experimental ¹⁹F-NMR experiments is very reliable in assigning pentafluorophenyl (C₆F₅) and non-afluorobiphenyl (C₁₂F₉) derivatives.

The following trends were observed in the experimental ¹³C-NMR spectra of **5–8**: the signals for 3,5-C, 2,6-C, 4-C, 2',6'-C, 3',5'-C, and 4'-C appeared at δ (C) 137–145 and those for 4-C, 1-C, and 1'-C appeared at δ (C) 101–117. The corresponding calculated values, derived at the B3LYP-GIAO/6-31++G(d,p) level, also showed good correla-

Fig. 4. Correlation between the experimentally determined and calculated ¹⁹F-NMR shieldings of **2–8** relative to CFCl₃ as internal reference. A similar correlation was obtained for the corresponding ¹³C-NMR data (not shown).

tions (0.990 < r^2 < 0.995). Thereby, the $\Delta\delta$ values showed some scatterings with regard to the atoms 1-C and 1'-C connecting two C₆F₅ rings. Nevertheless, the overall correlation coefficient for the ¹³C-NMR data of **2**–**8** was still high (r^2 =0.992).

Conclusions. – The pentafluorophenylation of the perfluorinated 1,4-oxazine **1** with $Me_3Si(C_6F_5)$ provided three kinds of substitution products, compounds **2**–**4**. The trisadduct **3**, almost selectively obtained with an excess of $Me_3Si(C_6F_5)$, has a very interesting cap structure, as confirmed by X-ray crystal-structure analysis. Although the formation of the tetrasubstituted compound **9** is conceivable by reacting **3** with $Me_3Si(C_6F_5)$, further pentafluorophenylation occurred only at the *para* position of the already introduced C_6F_5 rings due to the bulky cap structure of **3**, preventing nucleophilic attack at the C=N bond of the 1,4-oxazine ring. Accordingly, five nonafluorobiphenyl-substituted compounds, **5**–**8**, were obtained by multiple substitutions of the *p*-F-atoms of the C_6F_5 groups.

The structures of 2-8 were determined by ¹⁹F- and ¹³C-NMR, MS, and/or X-ray crystallography. Their assignments were confirmed by comparison of DFT-calculated (B3LYP-GIAO/6-31++G(d,p)) *vs.* experimental ¹⁹F- and ¹³C-NMR chemical shifts. Since the fundamentals for the structural analysis of such perfluoroaryl systems was established in this paper, a further elongation of perfluoroaryl system will be targeted next.

We would like to thank Dr. *Yutaka Tai* (National Institute of Advanced Industrial Science & Technology) for providing access to the TOF-MS facility.

Experimental Part

General. The starting material 1 (=2,2,3,3,5,6,6-heptafluoro-3,6-dihydro-2H-1,4-oxazine) was prepared by pyrolysis of potassium perfluoromorpholinoacetate [30] and purified by repeated trap-to-trap distillation (final purity: 95%). Trimethyl(pentafluorophenyl)silane, Me₃Si(C_6F_5) was prepared by reaction of bromopentafluorobenzene with chlorotrimethylsilane and phosphorus tris(diethylamide) [19] using tetraglyme as a solvent (instead of benzonitrile). Spray-dried KF was purchased from Wako Pure Chemical Industrial, Inc. All solvents were dried over 4-Å molecular sieves degassed by freeze-thaw cycles. All reactions were carried out under Ar atmosphere and under anh. conditions. Gases and volatile liquids were handled in a conventional Pyrex-glass vacuum system equipped with a Heise-Bourdon tube gauge and a Televac thermocouple gauge. Gas chromatographic (GC) analyses were performed on a Shimadzu GC-17A instrument with a NEUTA BOND-1 column (60 m×0.25 mm; 1.5 µm; GL Science). NMR Spectra were recorded on a Varian Unity-Inova-300 apparatus in CDCl₃ in a 5-mm NMR tube at 75.42 (13C) and 282.24 MHz (19F); δ values rel. to CFCl₃ as internal reference. The ¹³C-NMR spectra were measured using WURST modulation for complete fluorine decoupling, and using continuous wave for selective fluorine decoupling, resp. ¹⁹F-detected ¹⁹F, ¹³C-HMQC spectra were recorded at 282.24 MHz with full ¹³C decoupling using WALTZ-16 modulation and a relaxation delay of 2.4 s. GC/MS data were obtained with a Shimadzu QP-5000 quadrupole mass spectrometer by electron-impact (EI) ionization at 70 eV on the GC column described above. Direct-inlet mass spectrometric (DI-MS) data were obtained on a Shimadzu OP-1100EX quadrupole mass spectrometer in EI mode at 70 eV. MALDI-TOF-MS Data were obtained on a Bruker Daltonics AutoFLEX time-of-flight (TOF) mass spectrometer operated under matrix-assisted laser-desorption-ionization (MALDI) conditions (matrix: 'trans-3-indole-acrylic acid')

Reaction of **1** *with an Equimolar Amount of* $Me_3Si(C_6F_5)$. Spray-dried KF (39 mg, 0.42 mmol) in a 100-ml reaction vessel was dried at $80-90^{\circ}$ under vacuum, and then anh. MeCN (5 ml) was added using the vacuum line. The reaction vessel was cooled to -78° , and $Me_3Si(C_6F_5)$ (0.505 g, 2.08 mmol) was added under Ar atmosphere. The mixture was then cooled to -196° and treated with **1** (0.439 g, 2.10 mmol) using the vacuum-transfer method. The mixture was then stirred at 0° for 1 h, and then at r.t. for 20 h. The volatile products were removed in vacuum at 0° . Product **2** was obtained by trap-to-trap distillation ($50^{\circ}/1$ mmHg) in 36% isolated yield. The distilling residue was extracted with CHCl₃ (5 ml), and evaporation of the extract gave a mixture of **2** (41%), **3** (7%), and **4** (6.4%), as determined by ¹⁹F-NMR. The sample for the identification of **2** was obtained by *Kugelrohr* distillation.

Data of 2,2,3,3,6,6-Hexafluoro-5-(pentafluorophenyl)-3,6-dihydro-2H-1,4-oxazine (2). ¹⁹F-NMR (CDCl₃)²): -72.31 (*tm*, J=12.7, 2-F of C₄F₆NO); -89.68 (*tt*, J=5.9, 5.6, 6-F of C₄F₆NO); -99.76 (br. *t*, J=5.6, 5-F of C₄F₆NO); -138.65 (*m*, J=14.4, 12.7, 4.0, 2,6-F of C₆F₅); -145.94 (*tt*, J=21.5, 4.0, 4-F of C₆F₅); -158.68 (*m*, J=21.5, 14.4, 3,5-F of C₆F₅). ¹³C-NMR (CDCl₃)²): 105.16 (1-C of 3-C₆F₅); 107.27 (5-C of C₄F₆NO); 112.20 (2-C of C₄F₆NO); 113.57 (6-C of C₄F₆NO); 137.96 (3,5-C of 3-C₆F₅); 144.04 (4-C of 3-C₆F₅); 144.72 (2,6-C of 3-C₆F₅); 158.23 (3-C of C₄F₆NO). GC/EI-MS: 359 (9, *M*⁺), 193 (42), 124 (30), 100 (100), 93 (6), 69 (16).

Data of **3**. See below.

Data of 2,2,5,6,6-*Pentafluoro-3,3-bis(pentafluorophenyl)-3,6-dihydro-2*H-1,4-oxazine (**4**). This compound could not be isolated in pure form, neither by column chromatography (CC) on silica gel nor by *Kugelrohr* distillation, because it easily decomposed during isolation. ¹⁹F-NMR (CDCl₃)²): -62.81 (t, J=23.4, 3-F of C₄F₅NO); -75.80 (br. *s*, 2-F of C₄F₅NO); -78.45 (br. *s*, 6-F of C₄F₅NO); -135.83 (m, J=15.5, 2,6-F of C₆F₅); -149.26 (tt, J=21.6, 5.6, 4-F of C₆F₅); -159.46 (m, J=21.6, 15.6, 3,5-F of C₆F₅). ¹³C-NMR (CDCl₃)²): 66.34 (5-C of C₄F₅NO); 109.72 (2-C of C₄F₅NO); 110.17 (1-C of 5,5-(C₆F₅)₂); 119.03 (6-C of C₄F₅NO); 138.33 (3,5-C of 5,5-(C₆F₅)₂); 142.68 (4-C of 5,5-(C₆F₅)₂); 144.96 (2, 6-C of 5,5-(C₆F₅)₂); 149.33 (3-C of C₄F₅NO). GC/EI-MS: 507 (41, M^+), 441 (24, $[M-COF_2]^+$), 422 (100, $[M-COF_3]^+$), 377 (17), 372 (39), 358 (11), 346 (41), 327 (77), 296 (31), 274 (38), 258 (12), 248 (27), 229 (11), 227 (11), 224 (28), 217 (77), 198 (42), 179 (42), 148 (42), 117 (26), 93 (25), 81 (15), 69 (37).

Reaction of **2** with 2 Equiv. of $Me_3Si(C_6F_5)$. Spray-dried KF (8 mg, 0.085 mmol) in a 100-ml reaction vessel was dried at $80-90^{\circ}$ under vacuum, and then treated with anh. MeCN (1 ml) using the vacuum line. The vessel was cooled at -78° , and **2** (0.169 g, 0.41 mmol) was added under Ar atmosphere. The mixture

was then cooled to -196° , and treated with Me₃Si(C₆H₅) (0.198 g, 0.82 mmol) *via* vacuum transfer. The mixture was stirred at 0° for 1 h, and then at r.t. for 20 h. The volatile products were removed in vacuum from the reaction mixture at 50°, and the distilling residue was extracted with CHCl₃ (5 ml). Evaporation of the extract gave a light-yellow solid, a mixture of **2** (4%) and **3** (78%), which was purified by CC (SiO₂; hexane) to afford pure **3** in 49% isolated yield.

Data of 2,2,6,6-Tetrafluoro-3,3,5-tris(pentafluorophenyl)-3,6-dihydro-2H-1,4-oxazine (**3**). ¹⁹F-NMR (CDCl₃)²): -71.78 (br. *s*, 2-F of C₄F₄NO); -76.32 (br. *s*, 6-F of C₄F₄NO); -135.55 (br. *s*, 2,6-F of 5,5-(C₆F₅)₂); -140.01 (m, 2,6-F of $3-C_6F_5$); -147.92 (tt, J=21.5, 4.0, 4-F of $3-C_6F_5$); -149.27 (tt, J=21.5, 4.8, 4-F of 5,5-(C₆F₅)₂); -159.42 (dm, J=21.5, 3,5-F of $3-C_6F_5$); -159.49 (dm, J=21.5, 3,5-F of 5,5-(C₆F₅)₂); 113.25 (2-C of C₆F₄NO); 119.03 (6-C of C₆F₄NO); 137.86 (3,5-C of $3-C_6F_5$); 118.30 (3,5-C of 5,5-(C₆F₅)₂); 142.38 (4-C of 5,5-(C₆F₅)₂); 143.52 (4-C of $3-C_6F_5$); 144.93 (2,6-C of $5,5-(C_6F_5)_2$); 149.78 (3-C of C₆F₄NO); 145.03 (2,6-C of $3-C_6F_5$). DI-MS (EI): 655 (11, M^+), 589 (19, $[M-COF_2]^+$), 396 (54), 346 (60), 327 (100), 296 (31), 229 (26), 217 (25), 193 (10), 179 (40), 148 (13), 117 (10), 93 (13).

Reaction of **3** with an Equimolar Amount of $Me_3Si(C_6F_5)_3$. Spray-dried KF (10 mg, 0.11 mmol) in a 100-ml reaction vessel was dried at $80-90^{\circ}$ under vacuum, and then treated with anh. MeCN (1 ml) using the vacuum line. The reaction vessel was cooled at -78° , and **3** (0.20 g, 0.31 mmol) was added under Ar atmosphere. The mixture was cooled to -196° , and $Me_3Si(C_6F_5)_3$ (73 mg, 0.30 mmol) was added by vacuum transfer. The mixture was stirred at 0° for 1 h, and then at r.t. for 20 h. The volatile products were removed in vacuum at 50°, and the residue was extracted with CHCl₃ (5 ml), which, after evaporation, gave a deep-orange viscous liquid containing **3** (72%), **5** (4.5%), and **6** (3.3%), as determined by ¹⁹F-NMR. Anal. samples for the identification of **5** and **6** were obtained by CC (SiO₂; hexane/CH₂Cl₂99:1).

Data of 2,2,6,6-Tetrafluoro-5-(2,2',3,3',4',5,5',6,6'-nonafluorobiphenyl-4-yl)-3,3-bis(pentafluoro-phenyl)-3,6-dihydro-2H-1,4-oxazine (**5**). ¹⁹F-NMR (CDCl₃)²): -71.44 (br. *s*, 2-F of C₄F₄NO); -76.26 (br. *s*, 6-F of C₄F₄NO); -135.48 (br. *s*, 2,6-F of C₆F₅); -135.74 (*m*, 2,6-F of C₁₂F₉); -137.25 (*m*, 2',6'-F of C₆F₅); -139.37 (*m*, 3,5-F of C₁₂F₉); -149.10 (*tm*, J = 21.7, 4'-F of C₁₂F₉); -149.12 (*tm*, J = 23.7, 4-F of C₆F₅); -159.36 (*m*, 3,5-F of C₆F₅); -160.21 (*m*, 3',5'-F of C₁₂F₉). ¹³C-NMR (CDCl₃)²): 66.31 (5-C of C₄F₄NO); 101.44 (1'-C of 3-C₁₂F₉); 110.00; (4-C of 3-C₁₂F₉) 110.10 (1-C of 3-C₁₂F₉); 110.14 (1-C of 5,5-(C₆F₅)₂); 113.27 (2-C of C₄F₄NO); 119.05 (6-C of C₄F₄NO); 138.03 (3',5'-C of 3-C₁₂F₉); 138.28 (3,5-C of 5,5-(C₆F₅)₂); 142.37 (4-C of 5,5-(C₆F₅)₂); 142.93 (4'-C of 3-C₁₂F₉); 144.46 (3, 5-C of 3-C₁₂F₉); 144.48 (2,6-C of 3-C₁₂F₉); 145.03 (2,6-C of 5,5-(C₆F₅)₂); 149.98 (3-C of C₄F₄NO). DI-MS (EI): 803 (11, *M*⁺), 737 (17, [*M*-COF₂]⁺), 544 (20), 475 (13), 396 (12), 377 (13), 365 (12), 346 (44), 341 (14), 327 (100), 296 (27), 217 (18), 179 (15).

Data of 2,2,6,6-Tetrafluoro-3-(2,2',3,3',4',5,5',6,6'-nonafluorobiphenyl-4-yl)-3,5-bis(pentafluoro-phenyl)-3,6-dihydro-2H-1,4-oxazine (**6**). ¹⁹F-NMR (CDCl₃)²): -71.58 (br. *s*, 2-F of C₄F₄NO); -76.23 (br. *s*, 6-F of C₄F₄NO); -135.19 (br. *s*, 2,6-F of 5-C₆F₅); -135.19 (br. *s*, 2,6-F of C₁₂F₉); -135.90 (br. *s*, 3,5-F of C₁₂F₉); -137.16 (*m*, 2',6'-F of C₁₂F₉); -139.97 (*m*, 2,6-F of 3-C₆F₅); -147.84 (*t*, J = 21.5, 4-F of 3-C₆F₅); -149.12 (*tm*, J = 21.5, 4-F of 5-C₆F₅); -149.23 (*t*, J = 19.5, 4'-F of C₁₂F₉); -159.27 (*m*, 3,5-F of 5-C₆F₅); -159.34 (*m*, 3,5-F of 3-C₆F₅); -160.34 (*m*, 3',5'-F of C₁₂F₉). ¹³C-NMR (CDCl₃)²): 66.62 (5-C of C₄F₄NO); 101.40 (1'-C of C₁₂F₉); 106.17 (1-C of 5-C₆F₅); 108.88 (1-C of 3-C₆F₅); 109.99 (1-C of C₁₂F₉); 113.26 (2-C of C₄F₄NO); 116.48 (4-C of C₁₂F₉); 119.01 (6-C of C₄F₄NO); 137.85 (3,5-C of 3-C₆F₅); 138.01 (3,5-C of 5-C₆F₅); 138.30 (3',5'-C of C₁₂F₉); 142.47 (4-C of 5-C₆F₅); 142.93 (4-C of C₁₂F₉); 143.51 (4-C of 3-C₆F₅); 144.46 (2',6'-C of C₁₂F₉); 144.83 (3,5-C of C₁₂F₉); 144.91 (2,6-C of 5-C₆F₅); 2,6-C of C₁₂F₉); 145.00 (2,6-C of 3-C₆F₅); 149.97 (3-C of C₄F₄NO). DI-MS (EI): 803 (21, *M*⁺), 737 (44, [*M* - COF₂]⁺), 544 (31), 494 (57), 475 (100), 444 (27), 437 (15), 406 (18), 396 (19), 377 (13), 375 (10), 365 (14), 346 (18), 327 (47), 296 (15), 247 (23), 237 (43), 229 (43), 222 (22), 217 (33), 203 (12), 193 (17), 179 (47).

Reaction of **3** with 3 Equiv. of $Me_3Si(C_6F_5)$ under More-Harsh Conditions. Spray-dried KF (10 mg, 0.11 mmol) was placed in a 100-ml reaction vessel and dried at $80-90^\circ$ under vacuum. Then, anh. MeCN (1 ml) was added using the vacuum line, and the mixture was cooled at -78° . Compound **3** (0.20 g, 0.31 mmol) was added under Ar atmosphere. The mixture was cooled at -196° , and treated with Me₃Si(C₆F₅) (0.23 g, 0.97 mmol) by vacuum transfer. The mixture was stirred at 0° for 1 h, and then heated at 50° for 48 h. The volatile products were removed in *vacuo* at 50° , and the residue was

extracted with CHCl₃ (5 ml). Evaporation of the extract gave a deep-brown viscous liquid (0.22 g), which was subjected to CC (SiO₂; 1. hexane/CH₂Cl₂ 99:1, 2. hexane/AcOEt 95:5). The less-polar fractions eluted with hexane/CH₂Cl₂ consisted of several products of similar R_i values, which were not further separated. By ¹⁹F-NMR analysis, in combination with DFT calculations, compounds **3** (5.6%), **5** (8.3%), **6** (3.5%), **7a** (7.8%), **7b** (3.0%), and **8** (0.6%)⁴) could be identified (see text). The more-polar compounds trapped on top of the silica-gel column, eluted with hexane/AcOEt, formed a complex mixture of products (30 mg), as concluded by ¹⁹F-NMR. According to MALDI-TOF-MS experiments, it was obvious that a homologous series of dimers had been formed (see text and *Fig. 2*).

Data of 2,2,6,6-Tetrafluoro-3,5-bis(2,2',3,3',4',5,5',6,6'-nonafluorobiphenyl-4-yl)-3-(pentafluorophenyl)-3,6-dihydro-2H-1,4-oxazine (**7a**). ¹⁹F-NMR (CDCl₃)²): -71.58 (br. *s*, 2-F of C₄F₄NO); -76.20 (br. *s*, 6-F of C₄F₄NO); -135.05 (br. *s*, 2,6-F of C₆F₅); -135.22 (br. *s*, 3,5-F of 5-C₁₂F₉); -135.73 (*m*, 2, 6-F of 3-C₁₂F₉); -135.77 (*m*, 2,6-F of 5-C₁₂F₉); -137.11 (*m*, 2',6'-F of 5-C₁₂F₉); -137.26 (*m*, 2',6'-F of 3-C₁₂F₉); -139.32 (*m*, 3,5-F of 3-C₁₂F₉); -149.21 (*tm*, J = 21.5, 4'-F of 3-C₁₂F₉); -149.21 (*tm*, J = 21.5, 4'-F of 3-C₁₂F₉); -160.31 (*m*, 3',5'-F of 3-C₁₂F₉); -159.15 (*m*, 3,5-F of C₆F₅); -160.23 (*m*, 3',5'-F of 5-C₁₂F₉); 101.46 (1'-C of 3-C₁₂F₉); 101.46 (1'-C of 3-C₁₂F₉); 110.49 (1-C of 5-C₆F₅); 109.96 (1-C of 3-C₁₂F₉); 110.04 (1'-C of 5-C₁₂F₉); 112.66 (4-C of 3-C₁₂F₉); 113.30 (2-C of C₄F₄NO); 116.50 (4-C of 5-C₁₂F₉); 119.03 (6-C of C₄F₄NO); 138.02 (3',5'-C of 3-C₁₂F₉); 138.04 (3',5'-C of 5-C₁₂F₉); 138.33 (3,5-C of 5-C₆F₅); 142.46 (4-C of 5-C₆F₅); 142.91 (4'-C of 5-C₁₂F₉); 142.95 (4'-C of 3-C₁₂F₉); 144.56 (2,6-C of 5-C₆F₅); 142.46 (4-C of 5-C₁₂F₉); 144.50 (2,6-C and 2',6'-C of 3-C₁₂F₉); 2',6'-C of 5-C₁₂F₉); 144.56 (2,6-C of 5-C₆F₅); 142.46 (3,5-C of 5-C₁₂F₉); 150.24 (3-C of C₄F₄NO). DI-MS (EI): 951 (13, M⁺), 885 (24, [M - COF₂]⁺), 692 (12), 544 (25), 494 (36), 475 (100), 444 (25), 437 (13), 406 (12), 377 (17), 365 (26), 346 (11), 341 (29), 327 (59), 296 (14), 272 (11), 237 (13), 217 (14), 179 (14).

Data of 2,2,6,6-Tetrafluoro-3,3-bis(2,2',3,3',4',5,5',6,6'-nonafluorobiphenyl-4-yl)-5-(pentafluoro-phenyl)-3,6-dihydro-2H-1,4-oxazine (**7b**). ¹⁹F-NMR (CDCl₃)²): -71.72 (br. *s*, 2-F of C₄F₄NO); -75.78 (br. *s*, 6-F of C₄F₄NO); -134.84 (br. *s*, 3,5-F of 5,5-(C₁₂F₉)₂); -135.72 (br. *s*, 2,6-F of 5,5-(C₁₂F₉)₂); -137.14 (br. *s*, 2',6'-F of 5,5-(C₁₂F₉)₂); -139.99 (br. *s*, 2,6-F of C₆F₅); -147.79 (*tm*, J=21.5, 4-F of C₆F₅); -149.19 (*td*, J=21.7, 3.95, 4'-F of 5,5-(C₁₂F₉)₂); -159.31 (*m*, 3,5-F of C₆F₅); -160.30 (*m*, 3',5'-F of 5,5-(C₁₂F₉)₂). ¹³C-NMR (CDCl₃)²): 66.60 (5-C of C₄F₄NO); 101.39 (1'-C of 5,5-(C₁₂F₉)₂); 109.93 (1-C of 3-C₆F₅); 110.02 (1-C of 5,5-(C₁₂F₉)₂); 113.26 (2-C of C₄F₄NO); 116.65 (4-C of 5,5-(C₁₂F₉)₂); 119.55 (6-C of C₄F₄NO); 137.83 (3,5-C of 3-C₆F₅); 138.00 (3',5'-C of 5,5-(C₁₂F₉)₂); 144.89 (4'-C of 5,5-(C₁₂F₉)₂); 144.45 (3,5-C and 2',6'-C of 5,5-(C₁₂F₉)₂); 144.52 (2,6-C of 5,5-(C₁₂F₉)₂); 144.89 (2,6-C of 3-C₆F₅); 149.78 (3-C of C₄F₄NO). DI-MS (EI): 951 (8.9, *M*⁺), 885 (21, [*M* - COF₂]⁺), 692 (34), 672 (13), 622 (100), 592 (28), 554 (19), 544 (38), 525 (27), 517 (22), 516 (23), 513 (16), 494 (42), 489 (13), 485 (15), 475 (99), 444 (24), 437 (19), 420 (15), 406 (13), 377 (35), 365 (51), 358 (13), 346 (31), 341 (34), 327 (89), 321 (26), 312 (66), 311 (42), 296 (48), 277 (21), 272 (15), 261 (13), 237 (13), 229 (24), 217 (30), 179 (23).

2,2,6,6-*Tetrafluoro*-3,3,5-*tris*(2,2',3,3',4',5,5',6,6'-*nonafluorobiphenyl*-4-*yl*)-3,6-*dihydro*-2*H*-1,4-oxa*zine* (**8**). ¹⁹F-NMR (CDCl₃)²): -71.46 (br. *s*, 2-F of C₄F₄NO); -75.71 (br. *s*, 6-F of C₄F₄NO); -134.84 (br. *s*, 3,5-F of 5,5-(C₁₂F₉)₂); -135.10 (*m*, 2,6-F of 3-C₁₂F₉); -135.68 (*m*, 2,6-F of 5,5-(C₁₂F₉)₂); -137.08 (*m*, 2', 6'-F of 5,5-(C₁₂F₉)₂); -137.28 (*m*, 2',6'-F of 3-C₁₂F₉); -139.32 (br. *s*, 3,5-F of 3-C₁₂F₉); -149.13 (*tm*, J=21.5, 4'-F of 3-C₁₂F₉); -149.17 (*tm*, J=21.5, 4'-F of 5,5-(C₁₂F₉)₂); -160.29 (*m*, 3',5'-F of 3-C₁₂F₉); -160.31 (*m*, 3',5'-F of 5,5-(C₁₂F₉)₂). ¹³C-NMR (CDCl₃)²): 66.91 (5-C of C₄F₄NO); 101.39 (1'-C of 3-C₁₂F₉); 101.75 (1'-C of 5,5-(C₁₂F₉)₂); 109.01 (1-C of 5,5-(C₁₂F₉)₂); 110.06 (1-C of 3-C₁₂F₉); 113.29 (2-C of C₄F₄NO); 115.08 (4-C of 3-C₁₂F₉); 116.24 (6-C of C₄F₄NO); 116.25 (4-C of 5,5-(C₁₂F₉)₂); 138.02 (3', 5'-C of 3-C₁₂F₉ and 3',5'-C of 5,5-(C₁₂F₉)₂); 142.85 (4'-C of 3-C₁₂F₉); 142.90 (4'-C of 5,5-(C₁₂F₉)₂); 144.16 (3,5-C of 3-C₁₂F₉); 144.37 (3,5-C of 5,5-(C₁₂F₉)₂); 144.49 (2,6-C of 5,5-(C₁₂F₉)₂); and 2',6'-C of 5,5-(C₁₂F₉)₂); 144.53 (2,6-C and 2',6'-C of 3-C₁₂F₉); 150.44 (3-C of C₄F₄NO). MALDI-TOF-MS: 1099 (100, M^+), 1080 (65, [M-F]⁺).

⁴) Yields determined by ¹⁹F-NMR integration.

Empirical formula	C ₂₂ F ₁₉ NO
Formula weight	655.23
Temperature	173(2) K
Wavelength	0.71075 Å
Crystal system, space group	Monoclinic, $P 2_1/c$
Unit-cell dimensions	a = 12.1820(11) Å
	b = 13.0800(12) Å
	c=27.184(3) Å
	$\beta = 91.415(2)^{\circ}$
Volume	4330.2(7) Å ³
Ζ	8
Density (calc.)	2.010 Mg/m ³
Absorption coefficient	0.237 mm^{-1}
F(000)	2544
Data, restraints, parameters	9944, 0, 775
Goodness-of-fit on F^2	1.040
Final R for 8144 refl. $(I > 2\sigma(I))$	R1 = 0.0342, wR2 = 0.0840
R Indices (all data)	R1 = 0.0444, wR2 = 0.0921
Largest diff. peak and hole	$0.288, -0.247 \text{ e} \text{ Å}^{-3}$

Table 4. Crystal Data and	Details of Structure	Refinement of 3
---------------------------	----------------------	------------------------

Single Crystal X-Ray Analysis of **3** (Table 4)⁵). Suitable crystals of **3** were obtained by recrystallization from an aerobic hexane soln. at 5° of an anal. sample obtained by CC (SiO₂; hexane). A single crystal of dimension $0.30 \times 0.24 \times 0.16$ mm was mounted on a glass capillary and used for diffraction-data collection on a *Bruker SMART CCD* system at a temp. of 173(2) K. A total of 57,200 reflections were measured ($1.50 < \theta < 27.52^{\circ}$), with 9,944 reflections being unique ($R_{int} = 0.0349$). Absorption correction by the multi-scan method (SADABS) was applied to the data set, and the maximum and minimum transmission factors were 0.963 and 0.861, resp. The structure was solved by direct methods (SHELXS-97), and the non-H-atoms were refined anisotropically by full-matrix least-squares on F^2 (SHELXL-97). The final *R*1value was 0.0342 for 8,144 reflections with $I > 2\sigma(I)$.

Computational Methods. Density-functional-theory (DFT) calculations were performed with the Gaussian98 program package [31]. All geometries were optimized at the B3LYP hybrid functional [32][33] with the 6-31G(d) basis set. Isotropic NMR-shielding tensors were calculated at the B3LYP level using the gauge-independent atomic orbital (GIAO) method [34–36] with the 6-31++G(d, p) basis set. The chemical shifts δ were calculated from the shielding (σ) as $\delta = \sigma_{ref} - \sigma$, where σ_{ref} is the ¹⁹F-NMR shielding of CFCl₃ ($\sigma_{ref} = 179.1618$ ppm). The calculated ¹³C-NMR shifts were derived as above, but rel. to Me₄Si ($\sigma_{ref} = 182.4602$ ppm).

REFERENCES

- [2] W. E. Piers, G. J. Irvine, V. C. Williams, Eur. J. Inorg. Chem. 2000, 2131.
- [3] B. Hoge, C. Thösen, T. Herrmann, P. Panne, I. Pantenburg, J. Fluorine Chem. 2004, 125, 831.
- [4] A. A. Goodvin, F. W. Mercer, M. T. McKenzie, Macromolecules 1997, 30, 2767.
- [5] K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Macromolecules 2001, 34, 2065.
- [6] Z. Lu, L. Cheng, J. Li, K. Zhang, S. Yi, J. Qin, J. Polymer Sci., A 2004, 42, 925.

^[1] E. Y.-X. Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391.

⁵) The crystallographic data of **3** have been deposited with the *Cambridge Crystallographic Data Centre* as supplementary publication number CCDC-612410. Copies of the data can be obtained at http://www.ccdc.cam.ac.uk/data_request/cif.

- [7] H.-J. Lee, E.-M. Lee, M.-H. Lee, M.-C. Oh, J.-H. Ahn, S. G. Han, H. G. Kim, J. Polymer Sci., A 1998, 36, 2881.
- [8] J.-P. Kim, W.-Y. Lee, J.-W. Kang, S.-K. Kwon, J.-J. Kim, J.-S. Lee, Macromolecules 2001, 34, 7817.
- [9] Y. Li, P. W. H. Chan, N.-Y. Zhu, C.-M. Che, H.-L. Kwong, Organometallics 2004, 23, 54.
- [10] E. Baciocchi, M. F. Gerini, A. Lapi, J. Org. Chem. 2004, 69, 3586.
- [11] K. Tomizaki, A. B. Lysenko, M. Taniguchi, J. S. Lindsey, Tetrahedron 2004, 60, 2011.
- [12] R. Arakawa, Y. Shimomae, H. Morikawa, K. Ohara, S. Okuno, J. Mass Spectrom. 2004, 39, 961.
- [13] 'Synthetic Fluorine Chemistry', Eds. G. A. Olah, R. D. Chambers, G. K. S. Prakash, John Wiley & Sons, New York, 1992, Chapt. 10.
- [14] G. K. S. Prakash, A. K. Yudin, Chem. Rev. 1997, 97, 757.
- [15] R. P. Singh, J. M. Shreeve, Tetrahedron 2000, 56, 7613.
- [16] N. R. Patel, R. L. Kirchmeier, Inorg. Chem. 1992, 31, 2537.
- [17] V. V. Bardin, V. A. Petrov, I. V. Stennikova, G. G. Furin, Zh. Org. Khim. 1989, 25, 52.
- [18] V. V. Bardin, V. A. Petrov, V. K. Grinevskaya, E. I. Mysov, G. G. Furin, L. S. German, Zh. Org. *Khim.* **1990**, 25, 923.
- [19] N. R. Patel, R. L. Kirchmeier, J. M. Shreeve, Inorg. Chem. 1993, 32, 4802.
- [20] M. Nishida, A. Vij, R. L. Kirchmeier, J. M. Shreeve, Inorg. Chem. 1993, 34, 6085.
- [21] M. Nishida, T. Ono, T. Abe, Nippon Kagaku Kaishi 2000, 817.
- [22] M. Nishida, H. Fukaya, T. Ono, Eur. J. Org. Chem. 2003, 3648.
- [23] M. Nishida, T. Ono, J. Fluorine Chem. 2003, 120, 93.
- [24] R. E. Banks, M. K. Besheesh, N. J. Lawrence, D. J. Tovell, J. Fluorine Chem. 1999, 97, 79.
- [25] W. Tyrra, D. Naumann, J. Fluorine Chem. 2005, 126, 1303.
- [26] G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641.
- [27] M. Gdaniec, W. Jankowski, M. J. Milewska, T. Połoňski, Angew. Chem., Int. Ed. 2003, 42, 3903.
- [28] T. Korenaga, Y. Kawauchi, T. Kosaki, T. Ema, T. Sakai, Bull. Chem. Soc. Jpn. 2005, 78, 2175.
- [29] H. Fukaya, T. Ono, J. Comput. Chem. 2004, 25, 51.
- [30] M. Nishida, H. Fukaya, T. Abe, J. Fluorine Chem. 1996, 76, 3.
- [31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W.Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, 'Gaussian 98, Revision A.7', Gaussian, Inc., Pittsburgh PA, 1998.
- [32] A. D. Becke, J Chem. Phys. 1993, 98, 5648.
- [33] C. Lee, W.Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [34] R. Ditchfield, Mol. Phys. 1974, 27, 789.
- [35] K. Wolinski, A. J. Sadlej, Mol. Phys. 1980, 41, 1419.
- [36] K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.

Received April 21, 2006